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COMMENT 

A connection between the percolation transition and the onset 
of chaos in the Kauffman model 

Alex Hansen 
Institut fur Theoretische Physik, Universitat zu Koln, D-5000 Koln 41, Federal Republic 
of Germany 

Received 1 March 1988 

Abstract. It is demonstrated numerically that the percolation transition of the unstable 
sites and the onset of chaos in the Kauffman model happens for the same value of the 
bias on the randomly chosen rules in the two-dimensional triangular lattice and in the 
three- and four-dimensional hypercubic lattices. The percolation thresholds for the stable 
sites are different for the three- and presumably also four-dimensional lattices. On the 
triangular lattice the differences between the thresholds are too small to be resolved. The 
fractal dimension of the damage is calculated and also the spreading time on the four- 
dimensional hypercubic lattice. 

Of all the cellular automata [l] one may invent, the Kauffman model [2] is the most 
disordered one. This automaton was introduced in the biological literature in 1969 to 
model cell differentiation. Other related questions concerned the stability against 
mutations. Through this last topic the Kauffman model has become a tool for under- 
standing the general topic of propagation of damage in complex systems, i.e. under 
what conditions does minor damage spread through the entire system, and when does 
it stay localised? 

In this comment I study numerically the connection between this propagation of 
damage and percolation theory [3]. A close connection exists between these two 
concepts, as has been previously demonstrated by Weisbuch and Stauffer [4] and 
Stauff er [ 51 for the Kauff man model on a two-dimensional square lattice with nearest- 
neighbour interactions. I present results in this comment which show that for other 
lattice types and dimensions some of the results of [4,5] survive while others do not. 
I also present here, to my knowledge, the first numerical study of the four-dimensional 
Kauffman model. 

In the Kauffman model each node i belonging to a network with some topology 
has a Boolean variable ai associated with it. The values of these Boolean variables 
are updated at discrete timesteps by a set of rules 

ai(?+ 1) =x(a i l ( t ) ,  r~?.( t ) ,  * * * 9 aiK (1) 

where t is the time. Here the updating of the node i is determined by the values of 
the Boolean variables of K nodes i,, i z ,  . . . , i K .  The set of rules is chosen at random 
at time t = 0, and not changed afterwards, thus defining a quenched disorder. A control 
parameter p governing the disorder may be introduced by biasing the choice of rules 
in the following way [2]: a fraction p of all the possible configurations of the Boolean 
variables associated with the input nodes i l ,  . . . , iK at the time t will result in the 
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Boolean variable associated with node i taking the value 1 (out of the two possible 
choices 0 and 1) at time t + 1. Thus, for p = 0 or 1, there is no disorder; vi(t) = 0 or 
1 for all nodes when t > 0. Maximum disorder is found for p = f. 

Derrida and Stauffer [ 6 ]  and Weisbuch and Stauffer [4] reported that there is a 
critical value of the control parameter p = p c  such that for p > p c ,  called the chaotic 
phase, damage will spread in the network, while for p < p c ,  called the frozen phase, 
any damage will disappear or be confined to a local area of the network. The operational 
definition of damage here is the Hamming distance between two systems. Initially 
these systems are chosen identical (i.e. the initial configuration of the Boolean variables 
and the set of rules chosen are identical) except for one node where the value of the 
Boolean variable differs. The Hamming distance, M ,  between the two systems at a 
given time is simply the number of nodes whose Boolean values differ between the 
two systems. 

At the onset of chaos, p = p c ,  the Hamming distance M scales with the linear size 
of the network, L, with a fractal dimension [ 7 ]  d f ,  

M - Ldi. (2) 

Furthermore, the time T for the damage to touch the boundaries of the network scales 
with an exponent [ 7 ]  d , ,  

T - Ldl. (3) 

The values of these exponents in two [ 7 , 8 ] ,  three [9] and four dimensions are given 
in table 1, together with the values of p c .  

Table 1. The critical probability, p c ,  the fractal dimension of the damage and the critical 
exponent of the damage spreading time for various types of lattices. The superscripts refer 
to the reference list. This work deals with the four-dimensional data. 

Lattice P C  4 4 
~ ~~ 

ZD square 0.2g7 1.5' 1 .77 
2~ triangular 0.16' 1.5' 1.5' 
3~ cubic 0 . 1 2 ~  1 .s9 2.29 
4~ hypercubic 0.08 1.8 2.1 

The values quoted in table 1 for the four-dimensional hypercubic lattice were found 
by essentially the same method as used by de Arcangelis [9], except that I did not use 
the multispin coding technique described there since it was necessary to store 256 rules 
per site and thus it was more memory efficient to store these rules f; bitwise instead 
of the values of Boolean variables ui. These calculations were done mostly on a Cyber 
7 6  computer, and the updating time per site was 21.5 ws on this machine. First I 
determined the critical p c  by measuring the fractional damage, 4 ( p ,  t ) ,  i.e. Hamming 
distance, M, divided by the total number of nodes, for various p and for t large enough 
so that the asymptotic behaviour is reached. The lattice size was L = 7 ,  and I used 
helical boundary conditions in three directions. I also ran the program with smaller 
lattices than L = 7 ,  and from these data it seems that the results are rather insensitive 
with respect to the size of the lattice. The data I obtained for L = 7 are shown in figure 
1. They indicate that p c  = 0.080 * 0.005. A lower bound for p c  has been given by Derrida 
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Figure 1. The fractional damage @ ( p ,  t )  as a function of the bias p .  The lattice size is L = 7 
for all the data points. The data points marked were based on 500 realisations with 
t = 100, those marked + were based on 62 realisations and t = 500, and those marked x 
were based on 10 realisations and t = 2000. 

and Pomeau [lo]: 2pc(l - p c )  = 1/K where K is the number of input sites in the 
Kauffman rules, equation (1). The formula gives, for K = 8, a pc equal to 0.07. Stauffer 
[7] has given an upper bound on pc by the expression 2pc(l -pc) = T, where vc is the 
bond percolation threshold of the lattice. On the four-dimensional hypercubic lattice 
vc = 0.16, which gives pc = 0.09 as an upper bound. 

I measured the exponents df and d, by measuring the Hamming distance M and 
the time T when the damage first reaches the outer boundary of the lattice for lattice 
sizes varying from L = 4 to L = 9 when p = pc. These quantities were averaged over 
18 600 realisations. M and T are plotted against L in figure 2. A least-squares fit to 
(2) and (3) gave df== 1.8 and d,=2.1. I dropped the L= 4 data for the mass of the 
damage (see figure 2). It appears that this value is outside what is to be expected as 
a result of statistical fluctuations, and may be caused by correction-to-scaling terms 
appearing for this small lattice size. It is curious that these two exponents are essentially 
the same as those found in three dimensions [9]. This may indicate that the d = 3 
results have been obtained close to the upper critical dimension for the model. 

We now turn to the connection between the percolation critical point and the onset 
of chaos in the Kauffman model. This topic was investigated by Weisbuch and Stauffer 
[4] and Stauffer [ 5 ]  for the two-dimensional square lattice. These authors found that 
both the stable sites, i.e. those sites whose associated Boolean variable never changes 
(during the latter half of a run), and the unstable sites, i.e. those sites whose associated 
Boolean variable does change (during the latter half of a run) have their percolation 
thresholds [3] coinciding with the onset of chaos. Stauffer also found that the bias p 
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Figure 2. The Hamming distance M ( e )  and the propagation time T ( x )  when the damage 
touches the surface of the network as a function of L for the four-dimensional hypercubic 
lattice. The runs were done at p = 0.075. 

for which the densities of both stable and unstable sites are equal, coincides with p c ,  
the onset of chaos. 

I have done similar measurements for the two-dimensional triangular lattice, the 
three-dimensional cubic lattice and the four-dimensional hypercubic lattice. The struc- 
ture of the percolation clusters was identified by the Hoshen-Kopelman algorithm 
[ 111. More specifically, I measured the percentage of stable and unstable sites belonging 
to the largest cluster of each type of sites, Psm and Pum. I also measured the average 
size of the ‘finite’ clusters (i.e. not counting the largest cluster) for both the stable and 
unstable sites. The data are graphically represented for the four-dimensional hyper- 
cubic lattice in figure 3. I define the percolation thresholds, here called respectively 
p s  and pu, for the stable or unstable sites as the p for which Psm or PUm have their 
maximum slopes given in table 2. I also record the p ,  here called psu, for which the 
density of stable sites equals the density of unstable sites. Furthermore, the p for 
which the average size of the finite cluster of the stable and unstable sites is maximum 
I call psm and pum. All the above defined biases were very insensitive to the lattice 
size L. However, they were all, with the exception of pu and pum, sensitive to the 
number of timesteps I let the system run. A ‘finite time’ scaling ansatz of the form 

seems to work well for the various thresholds [5]. The asymptotic threshold biases 
found with (4) are given in table 3. They indicate that the percolation thresholds for 
the unstable sites in the cubic and four-dimensional hypercubic lattices, pu, seem to 
be equal to the onset-of-chaos threshold, p c .  In the two-dimensional triangular lattice 
the various thresholds are too close to be distinguished. The percolation thresholds 
for the stable sites seem only to be equal to p c  in the two-dimensional lattices [5]. In 
higher dimensions they are different, even though the four-dimensional data are less 
clear. However, it may be that a larger computer effort than the present one will show 
that also some of the two-dimensional lattices have distinct thresholds. The bias for 
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Figure 3. P,,, and Pum for the four-dimensional hypercubic lattice as a function of p for 
t = 100 ( a ) ,  t = 500 (+) and t = 2000 (x). The number of realisations used to generate these 
data is the same as quoted in figure 1. The Psm data start in the upper left corner and the 
Pum start in the lower left corner. 

Table 2. The effective thresholds for the thresholds defined in the text as a function of the 
running time. 

Lattice Time P. P. PW 

100 
2D triangular 400 

1600 

100 
3 0  cubic 500 

2000 

100 
4 D  hypercubic 500 

2000 

0.168 
0.166 
0.167 

0.185 
0.174 
0.169 

0.144 
0.130 
0.120 

0.161 
0.159 
0.158 

0.122 
0.122 
0.122 

0.074 
0.074 
0.074 

0.165 
0.164 
0.163 

0.154 
0.150 
0.147 

0.110 
0.104 
0.102 

Table 3. The asymptotic values of the thresholds defined in the text as found by assuming 
a time dependence as in (4). 

Lattice P. PU P S U  

2~ triangular 0.165 (5) 0.155 (5) 0.160 (5) 
4 0  hypercubic 0.085 (5) 0.074 (5) 0.090 (5) 
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which the density of stable and unstable sites are equal, psu, seems to be equal to p s .  
The percolation thresholds, psm and pum, based on the maximum of the mean cluster 
sizes are consistent with those based on Psm and P,,. 

This points towards a close connection between percolation theory and the onset 
of chaos in the Kauffman model, though not as close as one might first have guessed 
from the two-dimensional data only [6]: in general the onset of chaos agrees with the 
percolation threshold of the unstable sites, and disagrees with the percolation threshold 
of the stable sites. 

I would like to thank P M Lam, L R da Silva and D Stauffer for valuable discussions 
on this subject. This research was funded by Sonderforschungsbereich 125. 
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